The Inductive Effect and Chemical Reactivity. I. General Theory of the Inductive Effect and Application to Electric Dipole Moments of Haloalkanes

By Richard P. Smith
THE PORTION OF THIS PAPER CONTRIBUTED BY MR. RICHARD PEARSON SMITH CONSTITUTES A PART OF

A DISSERTATION

PRESENTER TO
THE FACULTY OF THE UNIVERSITY OF UTAH
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE BY THE DEPARTMENT OF CHEMISTRY

There are two copies of the original dissertation on file in the University of Utah Library
CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF UTAH]

The Inductive Effect and Chemical Reactivity. I. General Theory of the Inductive Effect and Application to Electric Dipole Moments of Haloalkanes

BY RICHARD P. SMITH, TAIKYUE REE, JOHN L. MAGER and HENRY EYRING

The inductive effect is discussed qualitatively in terms of bond orbital theory, and the main features of the effect are pointed out. A simple semi-classical model for the inductive effect is then introduced, and the analysis of this model leads to a method for calculating approximately net charges on atoms in molecules having no conjugation. All of the parameters are obtained from accepted longitudinal polarizabilities, screening constants, covalent bond radii and electric dipole moments. The method is checked by comparing calculated and observed electric dipole moments of some halogen substituted alkanes, and excellent agreement is found. The method will be shown, in succeeding papers, to be of great utility in understanding relative organic reaction rates and equilibria.

Introduction

The inductive effect has long been recognized as playing a prominent role in determining relative rates of organic reactions. The extent of this role has heretofore been impossible to determine, inasmuch as steric and resonance effects often overshadow—or have been thought to overshadow—the inductive effect, and lack of understanding of the nature of the effect has prohibited the calculation of its magnitude.

The successful correlation of relative amounts of ortho, meta and para nitrations of substituted benzenes with empirically calculated charges\(^1\) indicates that rough calculations of charges can be useful for discussing chemical reactivity semi-quantitatively. In this paper we propose to develop a general, approximate theory for calculating the magnitudes of charges on atoms in molecules having no conjugation. The theory will be checked by comparing a number of calculated and observed dipole moments. Succeeding papers in this series will show how reaction rates and equilibria may be semi-quantitatively correlated with charges calculated on the basis of our model for the inductive effect and improvements on it.

The principal inductive effect theories in existence are those of Branch and Calvin\(^3\) and

(1) Department of Chemistry, University of Notre Dame, Notre Dame, Ind.
(2) T. Ree (Ree) and H. Eyring, J. Chem. Phys., 8, 483 (1940).
Remick. Branch and Calvin followed ideas similar to those of Ingold and collaborators, who suppose that substituent effects are propagated principally along chemical bonds in molecules. Using the observations of Derick and others, they developed an empirical method for calculating acid strengths. "Inductive constants" were assigned to various groups, and rules for their application were given. A number of acid strengths were calculated on the basis of this theory, and rough accord with experiments was obtained. The theory of Remick is less empirical, being based largely on electronic polarizations of bonds and changes in effective kernel charges; it was used for discussing the dipole moments of some polyhalogeno alkanes. This theory bears some resemblance to the theory which we shall develop here; a further discussion of Remick's theory and its relationship to ours will be given later in this paper.

The problem of charge distribution in molecules is of course a quantum mechanical problem; consequently we shall first discuss the inductive effect quantum mechanically. This will lead to a simple picture for the inductive effect, but the approximations necessary for the development of a general theory will not permit its actual numerical application. Consequently, we shall use a semi-classical model, and thereby develop a simple method for calculating charge distributions; the results of the application of this method will, we believe, amply justify its use.

Bond Orbital Treatment of the Inductive Effect

We now discuss the inductive effect quantum mechanically, considering the electron pair of each bond as moving in a molecular orbital which may be written as a linear combination of atomic orbitals (L.C.A.O.) of the two atoms between which the electrons move. This localized electron pair, L.C.A.O. model seems necessary for simplicity in developing a general theory which readily permits approximate identification of net charges associated with individual atoms. Thus in the convenient notation of Mulliken, we write

\[\psi_B = a_a \psi_a + b_b \psi_b \]

(1)

for the bonding (lower energy) orbital in which the two electrons of a bond \(a-b \) are supposed to move. Here \(\psi_a \) and \(\psi_b \) are the atomic orbitals and \(a_a \) and \(b_b \) are numerical coefficients obtained by normalization of (1) and minimization of the energy with respect to the coefficients. When the coefficients are thus obtained and inserted into the expressions

\[Q_a = Q = -2e(a_a^2 + a_a b_b S) + e \]

(2)

and

\[Q_b = -Q = -2e(a_a b_b S + b_b^2) + e \]

(3)

for the approximate net charges on atoms \(a \) and \(b \), respectively, it is found\(^7\) that

\[Q = (\delta/\beta)(1 - 1/2(1 - S^2/\beta^2) + \ldots) \]

(4)

where

\[\delta = 1/2(a_a - b_b), \quad \alpha = \int \psi_a^* \psi_a d\tau, \quad \alpha = \int \psi_a^* \psi_a d\tau, \quad \beta = \gamma - 1/2S(\alpha_a + \alpha_b), \quad \gamma = \int \psi_a^* \psi_a d\tau, \quad S = \int \psi_a^* \psi_a d\tau \]

(5)

\[\beta = 1/2(\alpha_a - \alpha_b), \quad \alpha = \int \psi_a^* \psi_a d\tau, \quad \alpha = \int \psi_a^* \psi_a d\tau, \quad \beta = \gamma - 1/2S(\alpha_a + \alpha_b), \quad \gamma = \int \psi_a^* \psi_a d\tau, \quad S = \int \psi_a^* \psi_a d\tau \]

(6)

\[\delta = 1/2(\alpha_a - \alpha_b), \quad \alpha = \int \psi_a^* \psi_a d\tau, \quad \alpha = \int \psi_a^* \psi_a d\tau, \quad \beta = \gamma - 1/2S(\alpha_a + \alpha_b), \quad \gamma = \int \psi_a^* \psi_a d\tau, \quad S = \int \psi_a^* \psi_a d\tau \]

(7)

where \(h \) is the S.C.F. (self consistent field) one-electron Hamiltonian. In general it should be a satisfactory approximation to drop all terms in (4) but the first. Now Mulliken finds that the integral \(\beta \) is remarkably invariant with respect to a number of factors, including the polarity of the bond.\(^7\) Hence \(Q \) should be approximately linear in \(\delta \), which for bonds of the type we are considering has been shown by Mulliken to be given approximately by

\[\delta = 1/\mu A [(I_a - 1/2J_{ab}) - (I_b - 1/2J_{bb})] \]

(5)

Here \(I_a \) and \(I_b \) are the ionization potentials for atoms \(a \) and \(b \), respectively, in the appropriate valence states; \(A \) is roughly constant, being about 0.5 for the bonds studied by Mulliken; and \(J_{ab} \) and \(J_{bb} \) are integrals defined by

\[J_{ab} = \int \psi_a^* \psi_b d\tau \]

(6)

where the subscripts and superscripts (1) and (2) refer to the individual electrons of the bond.

Substitution of (5) into (4), neglecting higher order terms, gives

\[Q = Q = 1/\beta 1/2 (I_a - 1/2J_{bb}) - (I_b - 1/2J_{bb}) \]

(7)

since \(\beta \) is negative. Equation (7) permits us to see, qualitatively, the nature of the inductive effect. The quantity \(I_b \) is positive and roughly proportional to the square of the effective nuclear charge of atom \(b \), while \(J_{bb} \) is positive and roughly proportional to the nuclear charge of \(b \). Similar statements apply to \(I_a \) and \(J_{ab} \). Suppose a substituent removes charge from \(b \). This will increase the effective nuclear charge of \(b \), and therefore \((I_b - 1/2J_{bb}) \), since \(I_b \) predominates over \(1/2J_{bb} \). Hence \(Q \) increases, i.e., electrons are pulled from \(a \) onto \(b \); the resulting increase of the effective nuclear charge of \(a \) will cause \(a \) to pull electrons from the other atoms to which it is attached, and so on. The approximations made in the derivation of (7), together with the uncertainties in the quantities in the right-hand side of this equation, prevent us, at present, from actually using this formulation of the theory for numerical calculations.

"Semi-classical" Treatment of the Inductive Effect

We now proceed to develop the theory of the inductive effect on the basis of a simple model. Although the model used is probably only a rough approximation to the situation, its use permits calculation of the parameters involved in terms of quantities whose values are known empirically, and the numerical results obtained are surprisingly good.

The moment \(\mu \) induced in a system by a field of strength \(E \) is

\[\mu = \alpha E \]

(8)

where \(\alpha \) is the polarizability tensor; the non-diagonal components of \(\alpha \) will vanish if the axes of the system are properly chosen. An approximation frequently used for chemical bonds is the assumption that the diagonalized polarizability tensor has one component \(\alpha_i \) and two components \(\alpha_j \) where \(\alpha_i \) is the "longitudinal polarizability," i.e., the polarizability in the direction of the bond, and where \(\alpha_j \) is the "transverse polarizability" which is perpendicular to the bond direction. This assumption
has been discussed and applied by Wang and by Denbigh.

Let us now consider the application of the bond-direc-
tion component of (8) to the electron cloud of
the two bonding electrons of a bond $a-b$. It seems
reasonable to write

$$-Q^b_\text{Rab} = (b_1)_\text{ab} \left(\frac{Z_a^b R_a^b}{R_{ab}^2} - \frac{Z_b^a R_b^a}{R_{ab}^2} \right)$$

where Q^b_Rab is the net charge on atom a due to the
polarization of the electron pair of $a-b$, R_{ab} is the
inter-nuclear distance and $(b_1)_\text{ab}$ the longitudinal polariz-
ability of $a-b$, Z_a and Z_b are the effective nuclear
charges of a and b, respectively, in the molecule, and
R_a and R_b are the covalent bond radii of a and b, re-
spectively. The minus sign was introduced for
consistency between the direction of the field and
the induced moment. The principal assumptions
embodied in (9) are (a) that a bond dipole moment
may be represented by equal and opposite net
charges localized on the atomic nuclei, and (b) that
the dipoles are induced by a net force of the form
represented in (9). Assumption (a) seems neces-
sary in any simple treatment of the inductive
effect. Assumption (b) amounts to assuming
spherical potential fields for atoms a and b, neglect-
ing asymmetry due to the fact that the bonding
electrons have a greater probability of being found
between the atoms than elsewhere, and that the
conducting spheres on which the electrons move
have, on the average, radii equal to the covalent
bond radii.

According to Slater, one electron on atom a
exists a screening of s_a on another in the same valence
shell, where s_a is 0.35 unless the electron is in the s-
group, in which case 0.30 is used; hence we write

$$Z_a = Z_a^0 + \frac{z_a}{\epsilon_a}$$

where Z_a^0 is a constant for atom a, and ϵ_a is the
total net charge on atom a (sum of net charge
contributions from all bonds joined to a). Substitu-
tion of (10) and a similar equation for Z_b into (9)
yields

$$Q^b = \alpha_{ab} + \beta_{ab}$$

where

$$\alpha_{ab} = \frac{(b_1)_\text{ab}}{R_{ab}^2} \left(\frac{Z_a^b R_a^b}{R_{ab}^2} - \frac{Z_b^a R_b^a}{R_{ab}^2} \right)$$

$$\beta_{ab} = \frac{S_{ab}(b_1)_\text{ab}}{R_{ab}^2 R_b^a}$$

It is of interest to note, at this point, the consider-
ated difference in the theory of Remick's to ours.
Remick considered only C-C bonds and C-X bonds
where X was hydrogen or halogen. For the carbon–halogen bonds Remick derived the equation

$$\mu_{\text{ex}} - \mu_{\text{in}} = -1.583 \times 10^{-14} \left(\frac{R_{\text{ex}}}{b^0_{\text{ex}}} \right) \Delta \mu_{\text{ex}} R_{\text{ex}}$$

where μ_{ex} is a "standard bond moment," μ_{in} is the
moment under the influence of a change $\Delta \mu_{\text{ex}}$ in
the effective kernel charge of the carbon, R_{ex} is the C-X bond length, and $(R_{\text{ex}}/b^0_{\text{ex}})$ is the electronic polarization of the electron pair of C-X. Using the relations

$$\frac{4 \pi \rho}{3} = P^b$$

$$\frac{b_1 + 2b_1}{3} = \alpha$$

and the following relation, found empirically by Denbigh
for carbon–halogen bonds

$$b_1 = 0.57b_1$$

Remick's equation reduces to

$$\mu_{\text{ex}} - \mu_{\text{in}} = -2.95(b_1)_\text{ex} \Delta \mu_{\text{ex}} R_{\text{ex}}$$

If we make the approximation $R_C = R_X = R_C X$, our
theory gives us the corresponding equation

$$\delta \mu_{\text{ex}} = -\delta(b_1)_\text{ex} \frac{Z_a^0}{R_{\text{ex}}^2}$$

for the change, $\delta \mu_{\text{ex}}$, in the C-X bond moment due to a change
Z_a^0 in the effective charge of the carbon. We use $Z_a^0 = 0.35 \epsilon_a$, where ϵ_a is the charge in electronic moment
on the carbon, the factor 0.35 naturally arising from Slater's screen-
ing rules, while Remick empirically uses $\Delta \mu_{\text{ex}} = \frac{1}{b} \epsilon_a$.
Similar considerations apply to the other bonds discussed
by Remick. Thus our theory has much in common with
Remick's, although we believe ours to be a more direct
theory, being based on a simpler model, and not requiring
empirical corrections as did the former theory.

The α_{ab} defined by (12) depend on small differ-
ences between large quantities, and are therefore
very sensitive to the values of the s_a^0 and R_b^a.
In view of the uncertainties in these quantities, the
α_{ab} are best determined from measured electric di-
pole moments, as will be explained later.

The β_{ab}, on the other hand, present no such prob-
lem. It is found that our calculated charge distri-
butions are sufficiently insensitive to small changes
in the β_{ab} that the approximate values obtained
in the following way are satisfactory. We use $R_{\text{ab}} =
R_a + R_b$, and use Pauling's covalent bond radii
for the R_b. We use values of b_1 from Denbigh.

The α_{ab} for a number of bonds are summarized
in Table I. Note that our theory from the field-
polarizability viewpoint is immediately applicable
to double bonds.

<table>
<thead>
<tr>
<th>Bond</th>
<th>$b_1 \times 10^{18}$</th>
<th>cc.</th>
<th>R_a (Å)</th>
<th>R_b (Å)</th>
<th>s_a^0</th>
<th>β_a^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C</td>
<td>1.88 0.771 0.771</td>
<td>0.718 0.718</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-F</td>
<td>0.96* 0.771 0.64</td>
<td>0.401 0.581</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-Cl</td>
<td>3.67 0.771 0.99</td>
<td>1.23 0.744</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-Br</td>
<td>5.04 0.771 1.14</td>
<td>1.55 0.710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-I</td>
<td>8.09* 0.771 1.33</td>
<td>2.27 0.762</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-H</td>
<td>0.79 0.771 0.30</td>
<td>0.434 2.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-O</td>
<td>0.84* 0.771 0.66</td>
<td>0.346 0.472</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-N</td>
<td>0.85* 0.771 0.70</td>
<td>0.344 0.418</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-H</td>
<td>0.58 0.70 0.30</td>
<td>0.414 1.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-H</td>
<td>2.30 1.04 0.30</td>
<td>0.555 5.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>1.99 0.665 0.55</td>
<td>1.30 1.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>2.86 0.665 0.665</td>
<td>1.20 1.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=S</td>
<td>7.57 0.665 0.94</td>
<td>3.73 1.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N=O</td>
<td>2.43 0.647 0.547</td>
<td>2.60 2.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>3.1 0.602 0.547</td>
<td>2.61 3.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>3.54 0.602 0.602</td>
<td>2.84 2.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>2.28 0.602 0.70</td>
<td>1.17 1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* These values calculated assuming $b_1/b_1 = 0.57$, a rela-
tionship Denbigh found for C-Cl and C-Br bonds, and
using bond refraction values given by Denbigh.

** Nuclear bond in benzene and derivatives. One-half carbon–carbon
distance in benzene.

Application of the Theory to Organic Molecules

Basically, application of our charge distribution
theory to a molecule involves the solution of simulta-
nous equations of the form of (11), one for each
bond, subject to the restriction that the sum of the

(11) L. Pauling, "The Nature of the Chemical Bond," 2nd Ed.,
Cornell University Press, Ithaca, N. Y., 1940.
net charges must be zero. In practice, it is apparent that there will in general be fewer equations to solve for a given molecule than there are bonds in the molecule, if use is made of obvious charge equalities—for example, each of the three hydrogens in CH₂X has the same net charge.

Let us now consider the application of the theory to some simple molecules with two purposes in mind: Illustration of the method of application, and determination of some of the parameters. First, let us make our notation more compact by introducing the quantities

$$\gamma_{ab} = \frac{\alpha_{ab}}{1 + \beta_{ab}} \quad \beta_{ab} = \frac{\beta_a}{1 + \beta_a}$$

(14)

Then if \(a \) is an atom which is attached only to a particular carbon atom \((a = \text{F, Cl, Br, I, H, O of } \text{O} = \text{C, etc.})\), and \(b \) is carbon, then \(Q_a^b = e_a \) and (11) becomes, using definitions (14)

$$e_a = \gamma_{xc} + \beta_{cx}$$

(15)

Using the \(\beta_{ab} \) of Table I, we find \(\beta_{HC} = 0.13, \beta_{PC} = 0.25, \beta_{CSC} = 0.71, \beta_{HBC} = 0.91, \) and \(\beta_{IC} = 1.29. \) For the molecules CH₂X, then, we have the equations

$$e_x = \gamma_{XC} + \beta_{XC}$$

(16a)

$$e_H = \gamma_{HC} + \beta_{HC}$$

(16b)

to be solved subject to the condition that

$$e_C + e_X + 3e_H = 0$$

(16c)

The solution of the set of equations (16) is

$$e_H \Delta = (1 + \beta_{xc})\gamma_{HC} - \beta_{xc}\gamma_{XC}$$

(17a)

$$e_C \Delta = - \gamma_{XC} - \gamma_{HC}$$

(17b)

$$e_x \Delta = (1 + 3\beta_{HC})\gamma_{XC} - 3\beta_{xc}\gamma_{HC}$$

(17c)

where

$$\Delta = 1 + \beta_{xc} + 3\beta_{HC}$$

(17d)

Now the methyl halide bond angles are undoubtedly very close to tetrahedral\(^{12,18}\); assuming them to be tetrahedral, we have, for the methyl halide electric dipole moments

$$\mu_{CHX} = - e_x R_{CX} + e_H R_{CH}$$

(18)

where \(R_{CX} \) and \(R_{CH} \) are the C-X and C-H internuclear distances, respectively. Combining (18) with equations (17), we have

$$\mu_{CHM} = (1 + \beta_{xc} + 3\beta_{HC}) = \gamma_{HC} [3\beta_{xc} R_{CX} + (1 + \beta_{xc}) R_{CH}] - \gamma_{XC} (1 + 3\beta_{HC}) R_{CX} + \beta_{HC} R_{CH}$$

(19)

Equation (19) may be used to calculate the \(\gamma_{xc} \) for the carbon–halogen bonds from the parameters given previously, the measured internuclear distances,\(^{12}\) the measured electric dipole moments as given in Table II, and \(\gamma_{HC}. \) The value of \(\gamma_{HC} \) may be determined from the moment of the C-H bond in methane as follows. In equations (17) if \(X = H \) (methane) we find \(e_H = \gamma_{HC}/(1 + 4\beta_{HC}) \) or \(\gamma_{HC} = 1.52 e_H. \) Using 0.3 debye for the moment of the CH bond in methane\(^{14,18}\) and 1.09 Å, as the length of this bond,\(^{11}\) we find, assuming a direction \(C^+H^- \), that \(\gamma_{HC} = -0.418 \times 10^{-10} \) e.s.u. There is some possibility that the CH bond moment is in the opposite direction;\(^{14}\) in this case we find \(\gamma_{HC} = 0.418 \times 10^{-10} \) e.s.u. for a moment of the same magnitude. In our calculations in this paper we have used both of the above values of \(\gamma_{HC} \) and also \(\gamma_{HC} = 0 \) corresponding to no C-H bond moment in methane.

The results of our calculations are summarized in Table II. We now have the values of all the parameters necessary for the calculation of charge distributions for all haloalkanes. The distributions may be tested by comparing the calculated and observed electric dipole moments; some results of such tests are summarized in Table II. The results for the series \(CHX, CHX_2, CHX_3 \) are shown graphically in Fig. 1. In these calculations, all bond angles have been assumed tetrahedral, and the bond distances have been assumed to be the same as in the corresponding methyl halides. The carbon–carbon distance has been taken as 1.54 Å.\(^{11}\) Note, from its definition, that \(\alpha_{CC} = 0 \); hence application of (11) to the carbon–carbon bond in ethyl chloride, for example, yields

$$Q_1^1 = \beta_e (e_i - e_e)$$

(20)

where \(Q_1^1 \) is the net charge contribution to carbon 2 of the carbon–carbon bond; the carbons are numbered 1, 2 starting from the substituent. We note that carbon 2, having three hydrogens substituted on it, each with charge \(e_0 \), has the total net charge

$$e_2 = -3e_0 + Q_1^1$$

(21)

Hence, using (20)

$$e_2 + 3e_0 = \beta_e (e_i - e_e)$$

(22)

Hence for ethyl chloride the charge distribution is found by solving (21) simultaneously with

$$e_C = \gamma_{HC} + \beta_{HC} e_i$$

(23)

$$e_e = \gamma_{HC} + \beta_{HC} e_i$$

(24)

$$e_0 = \gamma_{HC} + \beta_{HC} e_i$$

(25)

$$e_i + e_i + 2e_e + 3e_0 + e_0 = 0$$

(26)

where \(e_i \) is the charge on each hydrogen attached

(16) W. L. G. Gent, Quarterly Reviews (London), 1, 383 (1948).
to carbon 1. Charge distributions for each haloalkanes are obtained similarly.

Discussion

Inspection of Table II reveals that the value of the methane C–H bond moment, which indirectly enters the calculations through γ_{HC}, does not make as much difference in the calculated dipole moments as might be expected. In fact, it is difficult to say which of the three “calculated” columns in Table II gives the best agreement with the observed values. As far as the four series CH$_2$X, CH$_3$X$_2$, CHX$_3$, and these figure, we have arrived at as being the most probable values.

This paper critically reviews the moments of the chlorinated methanes, which otherwise do not warrant dipole moment calculations for other ethyl halides as the methane CH moment is considered as point charges localized on nuclei as we have assumed, and that the potential fields of the atoms are spherical.

Needless to say, the results obtained for the ethyl halides do not warrant dipole moment calculations for other alkyl halides. However, it must be remembered that the primary importance of our theory is not the calculation of dipole moments, although we believe the theory gives a clear qualitative picture of “induction of bond moments” which results in such phenomena as a lower dipole moment for chloroform than for methyl chloride.

The main purpose of this work is the approximate calculation of dipole moments in molecules due to substituents. In succeeding papers in this series, we shall be interested primarily in differences in charges on various atoms in molecules, and these are far less sensitive than dipole moments to inaccuracies in the parameters of the theory. As an illustration of this point, consider ethyl iodide, the molecule listed in Table II where the value of the methane CH moment makes the most difference in the value of the calculated moment of the molecule. Here the quantity $\frac{e_i - e_s}{e_s}$ (where e_i is the charge on the carbon attached to the iodine and e_s is the charge on the other carbon) has the values 0.301, 0.298, and 0.295 (in units of 10^{-18} e.s.u.) for C–H$^+$ moments of 0.3D, 0, and $0.3D$, respectively.

Similar small variations in charge differences will occur for the other ethyl halides as the methane CH moment is varied. This result is of great importance, for it will enable us to calculate fairly accurately the differences in charges on atoms in molecules due to the induction of some substituent, such as a halogen. These charge differences are very important in determining relative reaction rates, as Ri and Eyering have shown for the nitration of substituted benzenes, and as this result will further demonstrate in future papers in this series.

Acknowledgment.—One of us (R. P. S.) wishes to express his sincere appreciation to the University of Utah Research Committee for a Graduate
Research Fellowship, 1949–1950, and to the Atomic Energy Commission for an A. E. C. Predoctoral Research Fellowship, 1950–1951, which assisted substantially in the carrying out of this work.